太阳的科普知识

网上有关“太阳的科普知识”话题很是火热,小编也是针对太阳的科普知识寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。

在群星之间,并不是空无一物,而是布满了物质,是气体,尘埃或两者的混合物.其中一种低温,不发光的星际尘云,相信是形成恒星的基本材料.

这些黑暗的星际尘云温度很低,约为摄氏-260至-160之间.天文学家发现这类物质如果没有什麼外力的话,这些星际尘云就如天上的云朵,在太空中天长地久的飘著.但是如果有些事情发生,例如邻近有颗超新星爆炸,产生的震波通过星际尘云时,会把它压缩,而使星际尘云的密度增加到可以靠本身的重力持续收缩.这种靠本身重力使体积越缩越小的过程,称为”重力溃缩”.也有一些其他的外力,如银河间的磁力或尘云间的碰撞,也可能使星际云产生重力溃缩.

大约在五十亿年前,一个称为”原始太阳星云”的星际尘云,开始重力溃缩.体积越缩越小,核心的温度也越来越高,密度也越来越大.当体积缩小百万倍后,成为一颗原始恒星,核心区域温度也升高而趋近於摄氏一千万度左右.当这个原始恒星或胎星的核心区域温度高逹一千万度时,触发了氢融合反应时,也就是氢弹爆炸的反应.此时,一颗叫太阳的恒星便诞生了.

经过一连串的核反应,会消耗掉四个氢核,形成一个氦核,而损失了一点点的质量.依据爱因斯坦质量和能量互换的方程式E=MC^2,损失的质量转化为光和热辐射出去,经过一路的碰撞,吸收再发射的过程,最后光和热传到太阳表面,再辐射到太空中一去不返,这也就是我们所看到的太阳辐射.当太阳中心区域氢融合反应产生的能量传到表面时,大部份以可见光的形式辐射到太空.

在五十忆年前刚形成的太阳并不稳定,体积缩胀不定.收缩的重力遭到热膨胀压力的阻挡,有时热膨胀力扬头,超过了重力,恒星大气因此膨胀.但是一膨胀,温度就跟著下降.膨胀过头,导致温度过低,使热膨胀压力挡不住重力,则恒星大气开始收缩.同样的,一收缩,温度就跟著上升,收缩过头,导致温度过高,又使热膨胀压力超过重力, 恒星大气又开始膨胀.

这种膨胀,收缩的过程反覆发生,加上周围还笼罩在云气中,因此亮度变化很不规则.但是胀缩的程度慢慢缩小,最后热膨胀力和收缩力达到平衡,进入稳定期.此时,太阳是一颗**的恒星,差不多就像我们现在看到的一样.

太阳进入稳定期后,相当稳定的发出光和热,可以持续一百亿年之久.这期间占太阳一生中的90%,天文学家特称为”主序星”时期.太阳成为一颗**主序星,至今己有五十亿年,再过五十亿年,太阳度过一生的黄金岁月后,将进入晚年.

有足够长的稳定期,对行星上的生命发生非常重要.以地球的经验来说,地球太约和太阳同时形成,将近十亿年后才出现生命,经过四十多亿年后,才发展出高等智慧的生物.因此,天文学家要找外星生命,只对生存期超过四十亿的恒星有兴趣.

太阳在晚年将成为红巨星

太阳在晚年时,将己经耗尽核心区域的氢,这时太阳的核心区域都是温度较低的氦,周围包著的一层正在进行氢融合反应,再外围便是太阳的一般物质.氢融合反应产生的光和热,正好和收缩的重力相同.核心区域的氦由於温度较低,而氦的密度又比氢大,所以重力大於热膨胀力而开始收缩,核心区域收缩产生的热散布到外层,加上外层氢融合反应产生的热,使得太阳外部慢慢膨胀,半径增大到吞没水星的范围.

随著太阳的膨胀,其发光散热的表面积也随之增加,表面积扩大后,单位面积所散发的热相对减少,所以太阳一边膨胀,表面温度也随之降到摄氏三千度,在发生的电磁辐射中,以红光最强,所以将呈现一个火红的大太阳,称为”红巨星”.

在红巨星时期的太阳不稳定,外层大气受到扰动会造成膨胀,收缩的脉动效应,而且脉动的周期和体积大小关.想想果冻的情形,轻拍一下果冻,它便会晃动,而且果冻越大,晃动的程度越小.同样的道理,红巨星的体积越大,膨胀,收缩的周期也越长.

简单来说,五十亿年后,太阳核心区域收缩的热将导致外部膨胀,变成一颗红巨星.充满氦的核心区域则持续收缩,温度也随之增加.当核心区域的温度升至一亿度时,开始发生氦融合反应,三个氦经过一连串的核反应后融合成为一个碳,放出比氢融合反应更巨量的光和热,使太阳外层急速膨胀,连地球也吞没了,成为一个体积超大的红色超巨星.

太阳的末路:白矮星

相似的过程是在红色超巨星的核心区域再次发生,碳累积越来越多,碳的密度比氦大,相对的收缩的重力也更大,史的碳构成的核心区域收缩下去.但是当此区域收缩到非常紧密结实的程度,也就是碳原子核周围所有的电子都挤在一起,挤到不能再挤时,这种紧密的压力挡住了重力收缩.虽然此时的温度比摄氏一亿度高很多,但是还没有高到可以产生碳融合反应的地步.因此,太阳核心区域不再收缩,但也没有多余的热使外层膨胀,就如此僵持著,形成了白矮星.由於白矮星的核心没有核融合反应来供给光与热,整个星球越来越暗,逐渐黯淡下去,最后变成一颗不发光的死寂星球----黑矮星.经过理论上的计算,白矮星慢慢冷却变成黑矮星的过程非常漫长,超过一百多亿年,而银河系的形成至今不过一百多亿年,因此天文学家认为银河系还没有老到可以形成黑矮星.

经过计算,太阳体积缩小一百万倍,约像地球一样大时,物质间拥挤的的程度才足以抗拒重力收缩.想想,质量与太阳相当,体积却只有地球大小,很容易算出白矮星的密度比水重一百万倍,也就是说一一方公分的物质约有一公吨重,是非常特别的物质状态,物理学家称为简并状态.原子是由原子核和电子构成.一般人都看过电子围绕原子核的图画或动画,虽然是简化的示意图,却也反映了微小的物质状态.通常电子都在距离原子核很远的地方绕转著,如果温度逐渐降低,或是外力逐渐增加,则电子的活动范围便被押挤而越来越小,逐渐靠近原子核.但是电子与原子核之间的距离有其最小范围,电子不能越过这道界线.就像围绕在玻璃珠周围的沙粒一样,沙粒最多依附在玻璃珠表面,而无法压入玻璃珠中.

同样的,当所有的电子都被迫压挤再原子的表层时,物质状态达到了一个临界,即使在增加压力,也无法将电子往内压挤.这种由电子处於最内层而产生的抗压力称为电子简并压力.依据理论推算,质量小於一点四个太阳质量的星球重力,不足以压垮电子简并压力,因此白矮星的质量不能比一点四个太阳质量更大.到目前为止,所发现的白矮星数量超过数百个,也都符合这个理论.这个上限首先是由一个印度天文学家钱德拉沙哈(Subrahmanyan Chandrasekhar 1910-1995)在1931年利用量子力学所求出来的,因此称为钱式极限(Chandrasekhar’s limit).

当钱德沙哈拉当年提出的这种由电子简并压力挡住重力收缩的星球时,并没有得到赞扬,再英国皇家天文学会在一九三五年所举办的研讨会中,更受到当代大师爱丁顿(Authur Eddington)爵士打压,认为宇宙中并没有这种天体.德拉沙哈受到这个打击后,没有办法在即刊上发表论文,因此他写了一本书<<恒星的结构与演化>>,后来成为这个领域中的经典之作.为什麼要称之为白矮星呢?这是因为第一哥确定的白矮星是天狼星的伴星,颜色属高温的青白色,但是体积如此小,因此称之为白矮星,但是后来陆续发现许多同类的恒星,星光颜色属於温度较低的**橙色,但是仍然称它们为白矮星.白矮星因此成为一个专有名词,专指这类由电子简并压力挡住重力收缩的星球.

有关星星历史上的记载与传说

不论中外,有关昂宿星团的记载都超过三千多年,它就是北天最明亮的星团之一.这个看起来模糊的一团天体,我国称之为昂宿,是二十八星宿中的一个.诗经中的<昭南.小星>就已经提到昂宿,<尔雅>释天中也提到西路昂也,昂的意思是毛毛的,所以称之为昂。史记—天关书中昂曰髦头,就是这个意思。昂宿星团在日本神话故事中,有许多不同的名称和故事,但大都与农业和渔业有关。例如在日本有些农业区,当看到昂宿星团与太阳一同升起时,表示到了春天播种的季节。有些沿海的地区,余名看到昂宿星团升起与落下来决定是否撒网。而在希腊神话中,七姊妹是擎天神阿特拉斯的女儿,她们是月亮女神阿特密斯的宫女,有一天再草原上玩耍的十,猎户奥莱翁突然闯了进来,七姊妹吓的逃到天上,躲在女神的袖子里,事后女神打开衣袖只见七只鸽子缩成一团。虽然奥莱翁无法抓到她们,但是他却一直追求著,直到天神宙斯同情而将她们安置在天上,成为七姊妹星团。从天文学的角度上看,最有可能的情况是第七颗星是一颗变星,原来很亮,后来变暗了。依据天文学家的研究,昂宿星团是一个行程至今约一亿年的年轻星团,其中包含许多亮度变化不规则的变星。由於昂宿星团属於年轻的星团,其中一些寿命很短的恒星才刚进入演化末期,这些恒星的亮度大都不稳定,例如金牛座BU星就是一颗亮度变化不规则的变星。

重质量恒星的演化

当这些物质以高速撞击在坚硬无比的内核区域时,产生强大的反弹力,而形成向外传播的震波。这种情形就像一个人用力拍桌子,越用力,产生反弹力道也越大。震波以超音速往外震动,挤压外层物质,促使温度急速升高,因此整个星球由内重质量恒星的稳定期依其质量有很大的差别,击中质量恒星的寿命相当短,只有数千万年.质量比太阳大倍以上的恒星寿命大约为数亿年至数十亿年。重质量恒星短寿的原因是质量大,导致收缩的重力也非常强而有力,使得恒星内和区域温度比较高,连带使核反应速率更劲爆,发出威猛的光与热,造成核星表面的温度比太阳型恒星高数倍以上,向太空辐射的光与热成几何级数增加.当恒星形成时,质量就已经固定,因此恒星发光发热都是在吃老本。重质量恒星本钱虽比太阳要多,但是其发热的速度却是数十倍以上,显然很快的便耗尽核反应的原料而进入演化的末期.

中子星

原子的直径范围比原子核大上一万倍,所以当电子被挤压进入原子核时,直径就缩小了一万倍以上,体积则缩小了一兆倍以上。因此,所有物质都成为中子时,体积可以说是小的惊人,密度也大的吓人。抗压力更是大。这种以中子紧密压挤在一起的抗压力,称为{中子简并压力}。依据理论,重质量恒星在演化末期,核心区域的质量如果在二至三个太阳质量之间,则强大的重力会把物质挤压成为中子。此时星球直径约为三十公里左右,强大的中子简并压力挡住了重力,星球不在收缩成为一个中子星。说到这里,中子星的故事并不完整,前面只其到恒星中央区域的情形,因此还要加上外层区域的变化情形,才会完整。经由目前物理学家仍不完全了解的过程,中心区域的物质全被挤压成中子时,星球内部的物质随著强大的重力陷向中心,陷落得速度非常快,核区域到表层的温度都高到能产生核融合反应。想想,如果地球上所有氢弹同时爆炸的情景。这可是整个星球都在发生核融合反应,将整个星球炸碎,形成天文学家所说的”超新星爆炸”。超新星爆炸有如烟火一样四射,只是规模大的多,持续得时间也久,整个超新星爆炸有如烟火一般四射,只是规模大的多,持续的时间也久。整个超新星爆炸扩散的过程可以持续数千年至数万年之久,阔至张范围渴达数十光年之远。在银河系中,超新星爆炸是最壮观的事件了。总结来说,质量比太阳大三倍以上的恒星就可能产生超新星爆炸。而炸碎后中心留下一个中子星。中子星主要经由中子构成,直径约为数十公里,密度是水的数千万至一亿倍,真是个异常的星球。

黑洞

质量在六个至八个太阳质量以上的恒星,在演化末期发生超过超新星爆炸时,如果内核区域的质量大於三个太阳质量,则连中子简并压力也抵挡不住强大的重力收缩,物质只好一路收缩下去,目前只有爱因斯坦提出的广义相对论可以解释这种问题。依据理论,物质缩小到约三公里左右,进入一个连光线都无法脱逃的范围,除了总值量,电核自转外,失去的所有的讯息,理问物理学家称这种奇异的状态为”黑洞”。既然黑洞不发光,那麼要如何去发现他勒?对於单独的黑洞,物理学家仍想不出好方法,但是如果黑洞是双星系统之一,则可以藉由观测双星的运动来推估看不到的伴星质量,伴星质量超过三个太阳质量而又看不到他,则可能是黑洞了。在双星系统中,如果其中之一是黑洞,则另外一颗恒星在演化晚期膨胀成为超巨星时,膨胀的物质会被黑洞强大的重力吸引,盘旋般向黑洞陷落。在盘旋陷落得过程中,形成一个吸积盘。物质在吸积盘中盘旋陷落得过程中,一路碰撞推挤,半径越来越小,温度也随之升高。在吸积盘内层温度高达摄氏百万度,发出X光。因此,天文学家搜索X光双星系统来推算看不见的伴星质量,如果这个看不见的伴星质量超过三个太阳质量,则认为他是黑洞的候选者。经过科学家近一百年的探究,对恒星结构的演变勾勒出一个轮廓,让我们认识恒星如何演变,步向终局的故事。其中有的恒星不由自主的步向轰轰烈烈的爆炸,许多元素像是钙,矽,铁等,就藉著超新星爆炸四散成为星际介质。这些物质在机缘巧合下,化作春泥更护化,经过重力的压缩后,又成为一颗灿烂的恒星,由於有这些元素,因此可以形成类似地球的行星,称命的发生也是要靠这些元素。例如在人体里面,血的成份有铁,骨骼有钙等,所以天文学家常说:”我们是超新星的子民’’。

太阳是一颗普通恒星, 银河系中共有约1亿颗这样的恒星。

直径: 1,390,000 千米.

质量: 1.989e30 千克

温度: 5800 开 (表面)

15,600,000 开 (核心)

太阳是太阳系中最大的物体. 它拥有全部太阳系质量的99.8% (木星具有剩余的大部分质量)。

太阳在许多神话中被人格化: 古希腊人称它为 Helios, 而古罗马人称它为 Sol。

太阳的质量由75%氢和25%氦组成(原子数量的92.1%为氢,7.8%为氦); 其他物质 ("金属")的数量总合仅为0.1%。在太阳核心区氢转化为氦,而这些量的改变很慢。

太阳外层有不同的自转周期:赤道面25.4天自转一周;两极地区则达到36天。这个奇特现象的产生是由于太阳并不像地球一样是一个固态球体,类似的情况在气态行星上也可看到。因此在太阳内部,自转周期也不同,但太阳核心区仍像实心体般自转。

太阳内核的状态是惊人的,温度达到15,600,000开,压力相当于2500亿个大气压。内核的气体被极度压缩以至于它的密度是水的150倍。

太阳释放能量为3.86e33尔格/秒(即38600亿亿兆瓦),它是由核聚变反应产生的。每秒大约有700,000,000吨的氢原子被转化为大约695,000,000吨的氦原子并放出5,000,000吨(=3.86e33尔格)的以伽马射线为形式的能量。由于射线向球体表面射出,能量不断地被吸收和散发,使得温度不断接低,所以才有内外巨大的温度差和基本的可见光。由对流输出的能量至少比辐射发散的能量高20%。

太阳的外表面被称作光球,温度约为5800开。太阳黑子属于太阳上“凉爽”的地方,仅为3800开(它们之所以看起来比较暗是因为与周围地区比较的缘故)。太阳黑子可以很大,直径可达50,000公里。太阳黑子的产生是由于复杂且目前又不为人所掌握的来自太阳磁力区的作用所产生的。

处在光球之上的一个小范围被称作色球。

在色球之上即阔又稀的物质称为日晕,向太空绵延数百万公里,但它只有在日食时(左图)才能被观测到。日晕的内部温度超过1,000,000开。

太阳的磁场作用力极大(按地球标准)并且十分复杂。它的磁层范围甚至大大超过了冥王星。

除了光和热,太阳也发散一种低密度的粒子流(多半为电子和质子)形成太阳风,以450公里/秒的速度在太阳系中传播。太阳风和高能量粒子在太阳上闪光时发射,会对地球上的潮浪及无线电通讯造成影响,并会由此产生极光。

最近从Ulysses号飞船上传回的数据显示由两极发散的太阳风移动速度翻了一倍,达750公里/秒,在低纬度区也有此现象。两极区的太阳风组成也不同,而且太阳磁场区看来也是惊人的不稳定。

更多的有关太阳风的研究将在最近上空的Wind,ACE和SOHO飞船协助下完成。它们将利用动态稳定的优势,直接处在地球与太阳之间离地球1,600,000公里的地方。

太阳风使得彗星产生了彗尾,有时甚至在飞船的轨道上产生可测量的效果。

壮观的环圈突起物,日冕,也常在太阳边缘部分显现。(左图)

太阳的能量输出不是稳定的,太阳黑子活动的数量也一样。太阳黑子活动在17世纪后半叶有一个周期异常微弱,称为 the Maunder Minimum,它正好与当时北欧不正常的低温期巧合(小冰河时期the Little Ice Age)。太阳形成至今,能量输出已增大了40%。

太阳已有45亿岁了,从诞生至今它已用去了内核中一半的氢原子了,它仍将“温和”地辐射50亿年左右(虽然那时它的光亮度将是现在的一倍),但最终它将耗尽所有能量。那时它将处于极其不稳定状态,随着状态的变化终会将地球一同毁灭(有可能形成一个全新的行星系)。

太阳的卫星

一共有九大行星及大量的其他小物体围绕太阳公转。(确切的说,规定行星及小物体的标准有一场争论,说到底只是个定义的问题)

行星 距离 (公里) 半径 (公里) 质量 (公斤) 发现者 发现日期

水星 57,910,000 2439 3.30e23

金星 108,200,000 6052 4.87e24

地球 149,600,000 6378 5.98e24

火星 227,940,000 3397 6.42e23

木星 778,330,000 71492 1.90e27

土星 1,426,940,000 60268 5.69e26

天王星 2,870,990,000 25559 8.69e25 赫歇耳 1781

海王星 4,497,070,000 24764 1.02e26 Galle 1846

冥王星 5,913,520,000 1160 1.31e22 Tombaugh 1930

太阳基本物理参数 半径:696295 千米.T6

质量:1.989×1030 千克=u(s

温度:5800 ℃ (表面)Zy

1560万℃ (核心)j*nb

总辐射功率:3.83×1026 焦耳/秒x

平均密度:1.409 克/立方厘米3c

日地平均距离:1亿5千万 千米AP

年龄:约50亿年6

天之文 -- 天文爱好者之家--天之文 ^2=l:

对于人类来说,光辉的太阳无疑是宇宙中最重要的天体。万物生长靠太阳,没有太阳,地球上就不可能有姿态万千的生命现象,当然也不会孕育出作为智能生物的人类。太阳给人们以光明和温暖,它带来了日夜和季节的轮回,左右着地球冷暖的变化,为地球生命提供了各种形式的能源。A

天之文 -- 天文爱好者之家--天之文 >O

在人类历史上,太阳一直是许多人顶礼膜拜的对象。中华民族的先民把自己的祖先炎帝尊为太阳神。而在古希腊神话中,太阳神则是宙斯(万神之王)的儿子。\/

天之文 -- 天文爱好者之家--天之文

太阳,这个既令人生畏又受人崇敬的星球,它究竟由什么物质所组成,它的内部结构又是怎样的呢?`v&6

天之文 -- 天文爱好者之家--天之文 _2HA

其实,太阳只是一颗非常普通的恒星,在广袤浩瀚的繁星世界里,太阳的亮度、大小和物质密度都处于中等水平。只是因为它离地球最近,所以看上去是天空中最大最亮的天体。其它恒星离我们都非常遥远,即使是最近的恒星,也比太阳远27万倍,看上去只是一个闪烁的光点。|]Cc@V

天之文 -- 天文爱好者之家--天之文 AQKK$

组成太阳的物质大多是些普通的气体,其中氢约占71%, 氦约占27%, 其它元素占2%。太阳从中心向外可分为核反应区、辐射区和对流区、太阳大气。太阳的大气层,像地球的大气层一样,可按不同的高度和不同的性质分成各个圈层,即光球、色球和日冕三层。我们平常看到的太阳表面,是太阳大气的最底层,温度约是6000摄氏度。它是不透明的,因此我们不能直接看见太阳内部的结构。但是,天文学家根据物理理论和对太阳表面各种现象的研究,建立了太阳内部结构和物理状态的模型。这一模型也已经被对于其他恒星的研究所证实,至少在大的方面,是可信的。L4f7h^

天之文 -- 天文爱好者之家--天之文 uuz

太阳的核心区域虽然很小,半径只是太阳半径的1/4,但却是太阳那巨大能量的真正源头。太阳核心的温度极高,达1500万℃,压力也极大,使得由氢聚变为氦的热核反应得以发生,从而释放出极大的能量。这些能量再通过辐射层和对流层中物质的传递,才得以传送到达太阳光球的底部,并通过光球向外辐射出去。@;wXG

天之文 -- 天文爱好者之家--天之文 Kp

太阳光球就是我们平常所看到的太阳园面,通常所说的太阳半径也是指光球的半径。光球的表面是气态的,其平均密度只有水的几亿分之一,但由于它的厚度达500千米,所以光球是不透明的。光球层的大气中存在着激烈的活动,用望远镜可以看到光球表面有许多密密麻麻的斑点状结构,很象一颗颗米粒,称之为米粒组织。它们极不稳定,一般持续时间仅为5~10分钟,其温度要比光球的平均温度高出300~400℃。目前认为这种米粒组织是光球下面气体的剧烈对流造成的现象。\c7^wX

天之文 -- 天文爱好者之家--天之文 l[zQoM

光球表面另一种著名的活动现象便是太阳黑子。黑子是光球层上的巨大气流旋涡,大多呈现近椭圆形,在明亮的光球背景反衬下显得比较暗黑,但实际上它们的温度高达4000℃左右,倘若能把黑子单独取出,一个大黑子便可以发出相当于满月的光芒。日面上黑子出现的情况不断变化,这种变化反映了太阳辐射能量的变化。太阳黑子的变化存在复杂的周期现象,平均活动周期为11.2年。v;n

天之文 -- 天文爱好者之家--天之文 7)O5

紧贴光球以上的一层大气称为色球层,平时不易被观测到,过去这一区域只是在日全食时才能被看到。当月亮遮掩了光球明亮光辉的一瞬间,人们能发现日轮边缘上有一层玫瑰红的绚丽光彩,那就是色球。色球层厚约8000千米,它的化学组成与光球基本上相同,但色球层内的物质密度和压力要比光球低得多。日常生活中,离热源越远处温度越低,而太阳大气的情况却截然相反,光球顶部接近色球处的温度差不多是4300℃,到了色球顶部温度竟高达几万度,再往上,到了日冕区温度陡然升至上百万度。人们对这种反常增温现象感到疑惑不解,至今也没有找到确切的原因。{*A

天之文 -- 天文爱好者之家--天之文 z'(~

在色球上人们还能够看到许多腾起的火焰,这就是天文上所谓的“日珥”。日珥是迅速变化着的活动现象,一次完整的日珥过程一般为几十分钟。同时,日珥的形状也可说是千姿百态,有的如浮云烟雾,有的似飞瀑喷泉,有的好似一弯拱桥,也有的酷似团团草丛,真是不胜枚举。天文学家根据形态变化规模的大小和变化速度的快慢将日珥分成宁静日珥、活动日珥和爆发日珥三大类。最为壮观的要属爆发日珥,本来宁静或活动的日珥,有时会突然"怒火冲天",把气体物质拼命往上抛射,然后回转着返回太阳表面,形成一个环状,所以又称环状日珥。IDF=a

天之文 -- 天文爱好者之家--天之文 uhcoO2

在日全食时的短暂瞬间,常常可以看到太阳周围除了绚丽的色球外,还有一大片白里透蓝,柔和美丽的晕光,这就是太阳大气的最外层—— 日冕。日冕的范围在色球之上,一直延伸到好几个太阳半径的地方。日冕里的物质更加稀薄,它还会有向外膨胀运动,并使得热电离气体粒子连续地从太阳向外流出而形成太阳风。k

天之文 -- 天文爱好者之家--天之文 4e

太阳看起来很平静,实际上无时无刻不在发生剧烈的活动。太阳表面和大气层中的活动现象,诸如太阳黑子、耀斑和日冕物质喷发等,会使太阳风大大增强,造成许多地球物理现象——例如极光增多、大气电离层和地磁的变化。太阳活动和太阳风的增强还会严重干扰地球上无线电通讯及航天设备的正常工作,使卫星上的精密电子仪器遭受损害,地面电力控制网络发生混乱,甚至可能对航天飞机和空间站中宇航员的生命构成威胁。因此,监测太阳活动和太阳风的强度,适时作出"空间气象"预报,越来越显得重要。&'

天之文 -- 天文爱好者之家--天之文 +1-

在银河系内一千多亿颗恒星中,太阳只是普通的一员,它位于银河系的对称平面附近,距离银河系中心约26000光年,在银道面以北约26光年, 它一方面绕着银心以每秒250公里的速度旋转,另一方面又相对于周围恒星以每秒19.7公里的速度朝着织女星附近方向运动。5yk

太阳闪烁着七彩光。 太阳。这是幅波长19.5nm铁XII的太阳像,图中几个明亮的区域是太阳的活动区,几个暗黑的区域是冕洞,而周围的一圈是日冕。SOHO拍摄。 太阳。这四幅太阳像是在不同元素谱线及不同波段上拍摄的,其中(a)铁IX/X, 17.1nm (b)铁XII,19.5nm (c)铁XV,28.4nm (d)氦II/硅XI,30.4nm。SOHO摄于1998年10月27日。 太阳内部结构示意图。 f

太阳黑子。 太阳黑子的本影和半影。 太阳黑子区域的耀斑。 太阳光球上的米粒组织。 /e

太阳日冕。SOHO探测器拍摄。 太阳日冕。摄于1991年7月11日日全食时。 太阳日冕。4英寸折射望远镜摄于1998年2月。 太阳日冕。1998年8月11日摄于土耳其东部的Haza湖岸。 ^(h3

太阳的日珥和日冕。摄于日全食时。 太阳日珥的爆发(右上角)。SOHO摄于1999年9月14日。 太阳日珥的爆发(右下角)。 从"阳光"号发射不久(1991年11月)到1995年末的太阳X射线图像。图中太阳活动由盛至衰十分明显。"阳光"号探测器拍摄。 1

太阳。SOHO拍摄。 日落。 日落。1999年4月16日摄于意大利的西西里岛。 夏季的太阳。摄于1996年6月。 Vkq!

太阳光芒四射。摄于美国加利福尼亚的Laguna山脉。 太阳。

关于“太阳的科普知识”这个话题的介绍,今天小编就给大家分享完了,如果对你有所帮助请保持对本站的关注!

(6)

猜你喜欢

发表回复

本站作者才能评论

评论列表(3条)

  • 采双的头像
    采双 2025年10月28日

    我是明德号的签约作者“采双”

  • 采双
    采双 2025年10月28日

    本文概览:网上有关“太阳的科普知识”话题很是火热,小编也是针对太阳的科普知识寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。在群星之间,并不是空无...

  • 采双
    用户102804 2025年10月28日

    文章不错《太阳的科普知识》内容很有帮助

联系我们:

邮件:明德号@gmail.com

工作时间:周一至周五,9:30-17:30,节假日休息

关注微信